The value of C01.3−C12.3+C23.3−C34.3+⋯+(−1)nCn(n+1).3 is
3n+1
n+13
13(n+1)
None of these
(1+x)n=C0+C1x+C2x2+⋯+Cnxn On integrating from - 1 to 0 C0–C12+C23⋯+(–1)nCnn+1=1n+1 Hence required = 13(n+1)