The value of the given integral I=∫-10x2edx+∫01x2.dx
e+13
e-13e
e+13e
13e
Explanation for correct option Given integral is I=∫-10x2edx+∫01x2.dx⇒I=∫-10x2edx+∫01x2.dx =1e.x33-10+x3301[∵∫xn.dx=xn+1n+1]=1e.033--133+133-033=13e+13=e+13e
Hence option(C) is correct