The value of ∫10x4(1−x)4dx
Consider the given integral.
I=∫10x4(1−x)4dx
I=∫10x4(1−x)2(1−x)2dx
I=∫10x4(1+x2−2x)(1+x2−2x)dx
I=∫10x4(1+x2−2x+x2+x4−2x3−2x−2x3+4x2)dx
I=∫10x4(x4−4x3+6x2−4x+1)dx
I=∫10(x8−4x7+6x6−4x5+x4)dx
I=[x99−4x88+6x77−4x66+x55]10
I=[199−4×188+6×177−4×166+155−0]
I=19−12+67−23+15
I=210−945+1620−1260+3781890
I=2208−22051890
I=31890=1630
Hence, this is the answer.