The value of ∫π20cos3x+12cosx−1dx is
Let I=∫π/20cos3x+12cosx−1dx
=∫π/20cos3x−cos3π32(cosx−cos3π3)dx
=∫π/20(4cos3x−3cosπ3)−(4cos3π3−3cosπ3)2(cosx−cosπ3)dx
=2∫π/20cos3x−cos3π3(cosx−cos3π3)dx−32∫π/20cosx−cosπ32(cosx−cosπ3)dx
=2∫π/20(cos2x+cos2π3+cosxcosπ3)dx−32∫π/20(1)dx
=∫π/20(1+cosx+12+cosx)dx−3π4=3π4+1−3π4=1