The correct option is B 3
Given y=f(x),y=g(x) are two curves, the equation of tangents to
these curves at points with equal abscissa say (x=α)
are given by
y−f(α)=f′(α)(x−α) & y−g(α)=g′(α)(x−α)...........{1}
These curves (lines) given by {1} intersect at a point on y-axis
∴y−f(α)=−αf′(α) &
y−g(α)=−αg′(α)
⇒ y=f(α)−αf′(α)
& y=g(α)−αg′(α)
⇒ f(α)−αf′(α)=g(α)−αg′(α)
⇒f(α)−g(α)=α{f′(α)−g′(α)}
replacing α=x
∴f(x)−g(x)=x{f′(x)−g′(x)}
⇒f(x)−g(x)=xddx{f(x)−g(x)}
⇒d{f(x)−g(x)}f(x)−g(x)=dxx
⇒log{f(x)−g(x)}=logx+logc=log(xc)
⇒f(x)−g(x)=xc (A)
Again, the equations ofthe normals at points with equal abscissa say x=α the two curves are
y−f(α)=−1f′(α)(x−α) & y−g(α)=−1g′(α)(x−α).......... {2}
These lines intersect at a point on x−axis
∴y=0
0−f(α)=−1f′(α)(x−α) & 0−g(α)=−1g′(α)(x−α)
⇒x=α+f′(α)f(α) &
x=α+g′(α)g(α)
⇒α+f′(α)f(α)=α+g′(α)g(α)
⇒f′(α)f(α)=g′(α)g(α) replacing α=x
we get
⇒f′(x)f(x)=g′(x)g(x) ⇒(f(x))2={g(x)}2+k
⇒{f(x)}2−{g(x)}2=k
⇒{f(x)+g(x)}{f(x)−g(x)}=k
⇒f(x)+g(x)=kcx (using A)(B)
Now solving (A) & (B) we get
f(x)=12(cx+kcx) (C)
and g(x)=12(kcx−cx) (D)
Now
Equation (C) passes through (1,1) when x=1,f(x)=1 and
Equation (D) passes through (2,3) when x=−1,g(x)=−2
∴ 2×1=c+kc & 3×2=k2c−2c
i.e. 4=c+kc.........{3}
and 6=k2c−2c.........{4}
Solving {3} and {4} for k & c we get c=−2, k=−8
Now putting the value of c,k in f(x) & g(x) i.e. in (C) & (D) we get
f(x)=2x−x and g(x)=2x+x
Now, ∫21(g(x)−f(x))dx=∫21(2x+x−(2x−x))dx
⇒∫21(2x)dx=3