The value of ∫3−1(|x−2|+[x])dx, where [x] denotes the greatest integer less than or equal to x, is
7
|x−2|={−(x−2) for−1≤x<2(x−2) for 2≤x≤3
[x]=⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩−1 for −1≤x<00 for 0≤x<11 for 1≤x<22 for 2≤x<3
So, ∫3−1(|x−2|+[x])dx=∫2−1−(x−2)dx+∫32(x−2)dx+∫0−1(−1)dx+∫100dx+∫211dx+∫322dx.
=[2x−x22]2−1+[x22−2x]32+[−x]0−1+[x]21+2[x]32
=92+12−1+1+2=7