The value of ∫a1[a]f′(x)dx, a>1, where [x] denotes the greatest integer not exceeding x is
A
af(a)−{f(1)+f(2)+...+f([a])}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
[a]f(a)−{f(1)+f(2)+...+f([a])}
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
[a]f([a])−{f(1)+f(2)+...+f([a])}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
af([a])−{f(1)+f(2)+...+f([a])}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B[a]f(a)−{f(1)+f(2)+...+f([a])} Let I=∫a1[x]f′(x)dx, a>1 Let a=k+h where [a]=k, 0≤h<1 ∵∫a1[x]f′(x)dx=∫211f′(x)dx+∫322f′(x)dx+...+∫kk−1(k−1)f′(x)dx+∫k+hkhf′(x)dx =(f(2)−f(1))+2(f(3)−f(2))+...+(k−1)[f(k)−f(k−1)]+k(f(k+h)−f(k)) =−f(1)−f(2)−f(3)...−f(k)+hf(k+h) =[a]f(a)−{f(1)+f(2)+...+f([a])}