1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration of Piecewise Continuous Functions
The value of ...
Question
The value of
∫
π
2
−
π
2
x
2
cos
x
1
+
e
x
d
x
is equal to
Open in App
Solution
Let
I
=
∫
π
2
−
π
2
x
2
cos
x
1
+
e
x
d
x
Using
∫
a
−
a
f
(
x
)
d
x
=
∫
a
0
(
f
(
x
)
+
f
(
−
x
)
)
d
x
, we get
I
=
∫
π
2
0
x
2
cos
x
(
1
+
e
x
)
d
x
(
1
+
e
x
)
=
−
∫
π
2
0
x
2
cos
x
d
x
using product rule, we get
I
=
x
2
∫
π
2
0
cos
x
d
x
−
∫
π
2
0
[
(
d
x
2
d
x
)
∫
cos
x
d
x
]
d
x
I
=
x
2
[
sin
x
]
π
2
0
−
∫
π
2
0
2
x
sin
x
d
x
I
=
π
2
4
−
2
[
x
∫
π
2
0
sin
x
d
x
−
∫
π
2
0
[
d
x
d
x
∫
sin
x
d
x
]
d
x
]
I
=
π
2
4
−
2
[
0
+
∫
π
2
0
cos
x
d
x
]
I
=
π
2
4
−
2
(
1
)
=
π
2
4
−
2
Suggest Corrections
0
Similar questions
Q.
The value of
π
2
∫
−
π
2
x
2
cos
x
1
+
e
x
d
x
is equal to
Q.
Evaluate
π
2
∫
−
π
2
cos
x
1
+
e
x
d
x
Q.
∫
π
/
2
−
π
/
2
cos
x
1
+
e
x
d
x
Q.
∫
π
2
−
π
2
c
o
s
x
1
+
e
x
d
x
=
Q.
The value of
∫
π
/
2
−
π
/
2
cos
x
1
+
e
x
dx
is equal to