Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
π22
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aπ24 I=π∫02xsinx3+cos2xdx ⇒I=π∫02(π−x)sin(π−x)3+cos[2(π−x)]dx ⇒I=π∫0[2πsinx3+cos2x−2xsinx3+cos2x]dx ⇒2I=π∫02πsinx3+cos2xdx ⇒I=ππ∫0sinx2+2cos2xdx[∵cos2x=2cos2x−1]
Let cosx=t⇒−sinxdx=dt ⇒I=π2−1∫1−dt1+t2 =π21∫−1dt1+t2 =π2[tan−1t]1−1 =π24