The value of integral ∫ex(x+1)√x2e2x−1dx is
(where C is constant of integration)
A
ln|xex−√x2e2x−1|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ln|xex+√x2e2x−1|+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
ln|xex+√x2e2x−1|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
ln|xe2x+√x2e2x−1|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bln|xex+√x2e2x−1|+C Let I=∫ex(x+1)√x2e2x−1dx
substituting, xex=z ⇒ex(x+1)dx=dz
So, integral reduced to, I=∫dz√z2−1=ln|z+√z2−1|+C=ln|xex+√x2e2x−1|+C