The value of integral ∫ex(2tanx1+tanx+cot2(x+π4))dx is equal to, where C is constant of integration
A
extan(x−π4)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
extan(π4−x)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
extan(x−3π4)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
extan(3π4−x)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aextan(x−π4)+C Let I=∫ex(2tanx1+tanx+cot2(x+π4))dx =∫ex(2tanx1+tanx+tan2(x−π4))dx =∫ex(2tanx1+tanx+sec2(x−π4)−1)dx =∫ex(tanx−11+tanx+sec2(x−π4))dx =∫ex(tan(x−π4)+sec2(x−π4))dx
Use the property ∫ex[f(x)+f′(x)]dx=exf(x)+C
So, I=extan(x−π4)+C