Geometric Interpretation of Def.Int as Limit of Sum
The value of ...
Question
The value of integral ∫ex(1√1+x2+1−2x2√(1+x2)5)dx is equal to
A
ex(1√1+x2+x√(1+x2)3)+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
ex(1√1+x2−x√(1+x2)3)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ex(1√1+x2+x√(1+x2)5)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aex(1√1+x2+x√(1+x2)3)+c ∫ex(1√1+x2−x√(1+x2)3+x√(1+x2)3+1−2x2√(1+x2)5) =ex1√1+x2+exx√(1+x2)3=ex(1√1+x2+x√(1+x2)3)+C Using ∫ex(f(x)+f′(x))dx, we get exf(x)+c