The value of integral ∫dθcos3θ√sin2θ can be expressed as irrational function of tanθ as
∫dθcos3θ√sin2θ=∫dθcos4θ√2tanθ
=∫sec2θ(1+tan2θ)√2tanθdθ
=1√2∫1+t2√tdt [Substitute
tanθ=t]
=1√2(2√t+t5/25/2)=√25√tanθ(5+tan2θ)+c