1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Special Integrals - 1
The value of ...
Question
The value of integral
∫
(
√
1
+
x
2
+
x
)
n
√
1
+
x
2
d
x
, is
A
1
n
(
√
1
+
x
2
+
x
)
n
+
c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1
n
(
√
1
+
x
2
+
x
)
n
−
1
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
n
−
1
(
√
1
+
x
2
+
x
)
n
−
1
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
n
−
1
(
√
1
+
x
2
+
x
)
n
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
1
n
(
√
1
+
x
2
+
x
)
n
+
c
Let,
(
√
1
+
x
2
+
x
)
n
=
z
Differentiating both side, we get
⇒
n
(
√
1
+
x
2
+
x
)
n
−
1
(
x
√
1
+
x
2
+
1
)
d
x
=
d
z
⇒
(
√
1
+
x
2
+
x
)
n
√
1
+
x
2
d
x
=
d
z
n
∴
Given integral
=
∫
d
z
n
=
1
n
z
+
c
=
1
n
(
√
1
+
x
2
+
x
)
n
+
c
∴
∫
(
√
1
+
x
2
+
x
)
n
√
1
+
x
2
d
x
=
1
n
(
√
1
+
x
2
+
x
)
n
+
c
Suggest Corrections
0
Similar questions
Q.
If
x
1
,
x
2
,
x
3
,
x
4
.
.
.
.
x
2
n
+
1
are in Arithmetic Progression, then find the value of
[
(
x
2
n
+
1
−
x
1
)
(
x
2
n
+
1
+
x
1
)
]
+
[
(
x
2
n
−
x
2
)
(
x
2
n
+
x
2
)
]
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
[
(
x
n
+
2
−
x
n
)
(
x
n
+
2
+
x
n
)
]
Q.
The value of
lim
x
→
1
(
x
n
+
x
n
−
1
+
x
n
−
2
+
.
.
.
.
+
x
2
+
x
−
n
x
−
1
)
is
Q.
Sum of the series
(
1
+
x
)
+
(
1
+
x
+
x
2
)
+
(
1
+
x
+
x
2
+
x
3
)
+
.............. upto n terms is
Q.
The value of
l
i
m
x
→
1
x
n
+
x
n
−
1
+
x
n
−
2
+
.
.
.
.
.
.
.
+
x
2
+
x
−
n
x
−
1