wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

The value of integral 3π4π4x1+sinxdx is

A
π2(2+1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
π(21)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2π(21)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A π2(2+1)
We have,

I=3π4π4x1+sinxdx

Multiply and divide LHS with (1sinx), we get

I=3π4π4x(1sinx)1sin2xdx


I=3π4π4x(1sinx)cos2xdx


I=3π4π4x(sec2xsecxtanx)dx

I=3π4π4xsec2x3π4π4xsecxtanxdx

Using integration by parts

I=[(xtanx)(1.tanxdx)]3π4π4+[(xsecx)(1.secxdx)]3π4π4

I=[(xtanx)(log|secx|)]3π4π4+[(xsecx)+(log|secx+tanx|]3π4π4

I={[3π4tan3π4ln3π4][3π4sec3π4lnsec3π4+tan3π4]}

{[π4tanπ4lnπ4][π4secπ4ln|secπ4+tanπ4|]}

I=π2(2+1)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon