wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of integral π3π6sinxxcosxx(x+sinx)dx is

A
loge2(π+3)(2π+33)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
loge(π+3)2(2π+33)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
loge(2π+33)2(π+3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
loge2(2π+33)(π+3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B loge2(π+3)(2π+33)
Let I=π3π6sinxxcosxx(x+sinx)dx

I=π3π6(x+sinx)x(1+cosx)x(x+sinx)dx

I=π3π6(1x1+cosxx+sinx)dx

I=[logx]π/3π/6π3π61+cosxx+sinxdx

Put t=x+sinx; dt=(1+cosx)dx in 2nd term

I=(logπ3logπ6)(π3+32)(π6+12)dtt

I=log2[logt](π3+32)(π6+12)

I=log2[log(π3+32)log(π6+12)]

I=log2log(2π+33π+3)(logmlogn=logmn)

I=log(2(π+3)2π+33)=log(2π+62π+33)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon