The value of integral ∞∫0[n⋅e−x]dx is equal to (where [⋅] denotes the greatest integer function and n∈N,n>1)
A
ln(nn−1n!)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ln(nnn!)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
ln(nn+1n!)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bln(nnn!) I=∞∫0[n⋅e−x]dx
Let e−x=t ⇒I=1∫0[nt]tdtI=1n∫0[nt]tdt+2n∫1n[nt]tdt+⋯+1∫n−1n[nt]tdt=0+2n∫1n1tdt+3n∫2n2tdt+⋯+1∫n−1n(n−1)tdt=[ln|t|]2/n1/n+2[ln|t|]3/n2/n+⋯+(n−1)[ln|t|]1n−1n=ln2n−ln1n+2(ln3n−ln2n)+⋯+(n−1)lnnn−1=ln21+2ln32+⋯+(n−1)lnnn−1=ln(2×3222×4333×⋯×nn−1(n−1)n−1)=ln(nn−11×2×3×⋯×(n−1))=ln(nnn!)