The value of integral θ∫0ln(1+tanθtanx)dx,θ∈(0,π2) is equal to
A
2θ⋅lnsecθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
θ⋅lnsecθ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2θ⋅lncosθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
θ⋅lncosθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bθ⋅lnsecθ I=θ∫0ln(1+tanθtanx)dx =θ∫0ln(1+tanθtan(θ−x))dx=θ∫0ln(1+tanθ(tanθ−tanx1+tanθtanx))dx=θ∫0ln(1+tan2θ1+tanθtanx)dxI=θ∫0ln(sec2θ)dx−θ∫0ln(1+tanθtanx)dxI=2θlnsecθ−I⇒I=θ⋅lnsecθ