The value of integral e3∫1[lnx]dx is (where [.] denotes the greatest integer function)
2e3+e2+e
−2e3−e2−e
2e3−e2+e
Let I=e3∫1[lnx]dx =e∫10dx+e2∫e1dx+e3∫e22dx=0+e2−e+2(e3−e2) =2e3−e2−e