The correct option is A π12[π+3ln(2+√3)−4√3]
Let
I=1/√3∫−1/√3x41−x4⋅cos−1(2x1−x2)dx =1/√3∫−1/√3x41−x4⋅[π2−sin−1(2x1−x2)]dx =π21/√3∫−1/√3x41−x4dx−1/√3∫−1/√3x41−x4⋅sin−1(2x1−x2)dx
We know that,
a∫−af(x) dx=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩2a∫0f(x) dx, if f(x) is even0, if f(x) is odd
⇒I=π1/√3∫0x41−x4dx−0
⇒I=π21/√3∫0(−2+11−x2+11+x2)dx =π2[−2x+12ln∣∣∣1+x1−x∣∣∣+tan−1x]1/√30 =π12[π+3ln(2+√3)−4√3]