The value of integral 5∫3lnx2lnx2+ln(64−16x+x2)dx, is
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2ln5−ln3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B1 Let I=5∫3lnx2lnx2+ln(64−16x+x2)dx=5∫3lnx2lnx2+ln(x−8)2dx⋯(i)
Using the property: b∫af(x)dx=b∫af(a+b−x)dx ⇒I=5∫3ln(x−8)2lnx2+ln(x−8)2dx⋯(ii)
adding (i) and (ii): ⇒2I=5∫31dx ⇒I=12[x]53=1
Alternate solution : As f(x)+f(a+b−x)=1 ⇒I=b−a2=5−32=1