The correct option is A −√(3−x)(2−x)+ln|√3−x+√2−x|+C
Let I=∫√x−2x−3dx
Substituting, x=2sec2y−3tan2y
⇒dx=−2sec2ytanydy
and −sec2y+3=x,⇒secy=√3−x,tany=√2−x
The integral becomes,
I=∫√−tan2y−sec2y⋅(−2sec2ytany)dy =−2∫secytan2ydy =2∫sinIy⋅−sinycos3yIIdy =2[siny−2cos2y+12∫cosycos2ydy] =−secytany+ln|secy+tany|+C =−√(3−x)(2−x)+ln|√3−x+√2−x|+C