The value of ∫01x4+1x2+1dx
16(3–4π)
16(3π+4)
16(3+4π)
16(3π–4)
The explanation for the correct answer.
Solve for the value of integral.
I=∫01x4+1x2+1dx=∫01x2+12x2+1-2x2x2+1dx=∫01x2+1dx-2∫01x2x2+1dx=∫01x2+1dx-2∫01x2+1-1x2+1dx=∫01x2+1dx-2∫01x2+1x2+1dx+2∫011x2+1dx=x33+x01-2x01+2tan-1x01=13+1-0-21-0+2π4-0=43-2+π2=π2-23=3π-46
Hence, option(D) is the correct answer.