The value of ∫0∞1x2+4x2+9dx is
π60
π20
π40
π80
The explanation for the correct answer :
Solve for the given integrals.
I=∫0∞1x2+4x2+9dx=15∫0∞1x2+4dx-∫0∞1x2+9dx=1512tan-1x20∞-13tan-1x30∞=1512×π2-0-13×π2-0=15π4-π6=π60[∴∫1x2+a2dx=1atan-1xa+c]
Hence, option (A) is the correct answer.