The value of ∫0π211+cotxdxis
π
π2
π3
π4
Explanation for correct option
Given: ∫0π211+cotxdx
Let I=∫0π211+cosxsin(x)dxI=∫0π2sin(x)sin(x)+cos(x)dx--------(1)
using the property x→a+b-x ∫bax·dx=∫ba(a+b-x)·dx
I=∫0π2sinπ2+0-xsinπ2+0-x+cosπ2+0-xdx⇒I=∫0π2sinπ2-xsinπ2-x+cosπ2-xdx⇒I=∫0π2cos(x)cosx+sinxdx--------(2)
adding (1) and (2)
⇒I+I=∫0π2cos(x)cosx+sinxdx+∫0π2sin(x)sinx+cosxdx⇒2I=∫0π2cos(x)+sin(x)cosx+sinxdx⇒2I=∫0π21dx∫c·dx=cx⇒2I=x0π2⇒2I=π2-0⇒2I=π2⇒I=π4
Hence, option D is correct.