wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of 0π211+tan3xdx is


A

π

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

0

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

2π

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

π4

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

π4


Explanation for correct option

Given: 0π211+tan3xdx

Let I=0π211+tan3xdx

I=0π211+sin3xcos3(x)dxI=0π2cos3(x)sin3(x)+cos3(x)dx--------(1)

using the property xa+b-x bax·dx=ba(a+b-x)·dx

I=0π2cos3π2+0-xsin3π2+0-x+cos3π2+0-xdxI=0π2cos3π2-xsin3π2-x+cos3π2-xdxI=0π2sin3(x)cos3x+sin3xdx--------(2)

adding (1) and (2)

I+I=0π2cos3(x)cos3x+sin3xdx+0π2sin3(x)sin3x+cos3xdx2I=0π2cos3(x)+sin3(x)cos3(x)+sin3(x)dx2I=0π21·dxc·dx=cx2I=x0π22I=π2-02I=π2I=π4

Hence, option D is correct.


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon