The value of ∫0π211+tan3xdx is
π
0
2π
π4
Explanation for correct option
Given: ∫0π211+tan3xdx
Let I=∫0π211+tan3xdx
⇒I=∫0π211+sin3xcos3(x)dx⇒I=∫0π2cos3(x)sin3(x)+cos3(x)dx--------(1)
using the property x→a+b-x ∫bax·dx=∫ba(a+b-x)·dx
I=∫0π2cos3π2+0-xsin3π2+0-x+cos3π2+0-xdx⇒I=∫0π2cos3π2-xsin3π2-x+cos3π2-xdx⇒I=∫0π2sin3(x)cos3x+sin3xdx--------(2)
adding (1) and (2)
⇒I+I=∫0π2cos3(x)cos3x+sin3xdx+∫0π2sin3(x)sin3x+cos3xdx⇒2I=∫0π2cos3(x)+sin3(x)cos3(x)+sin3(x)dx⇒2I=∫0π21·dx∫c·dx=cx⇒2I=x0π2⇒2I=π2-0⇒2I=π2⇒I=π4
Hence, option D is correct.
Divide.
212÷5
The value of∫04|x-1|dx is