The value of ∫0π2(cos(3x)+1)(2cosx-1)dx=
2
1
12
0
Explanation for correct option
Given: ∫0π2(cos(3x)+1)(2cosx-1)dx
Let ∫0π2(cos(3x)+1)(2cosx-1)dx=I
=∫0π2(1+cos(3x)2cos(x)−1)dx=∫0π2cos(3x)−cos3π32cos(x)−12dx=∫0π2cos(3x)−cos3π32(cos(x)−cosπ3dxascosπ3=12=∫0π2(4cos3(x)−3cos(x))−(4cos3π3−3cosπ3)2(cos(x)−cosπ3)dxascos(3x)=4cos3(x)-3cos(x)=∫0π24cos3(x)−cos3π32cosx−cosπ3−3cosx−cosπ32cosx−cosπ3dx=∫0π22cos(x)−cosπ3cos2(x)+cos2π3+cos(x)·cosπ3cosx−cosπ3−3cosx−cosπ32cosx−cosπ3dxas(a3-b3)=(a-b)(a2+b2+ab)=∫0π22cos2(x)+12+cosxdx−32∫0π2[x].dx=∫0π21+cos(2x)+12+cosxdx−32π2−0cos(2x)=2cos2(x)-1=∫0π2cos(2x)+32+cos(x)dx−3π4=sin(2x)4+32x+sin(x)0π2−3π4=sin2(π2)2−sin02+32π2−0+sinπ2−sin0−3π4=sin(π)2+3π4+1-3π4=0+1−0=1Hence, option B is correct.