wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of 0π2(cos(3x)+1)(2cosx-1)dx=


A

2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

1

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

12

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

0

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

1


Explanation for correct option

Given: 0π2(cos(3x)+1)(2cosx-1)dx

Let 0π2(cos(3x)+1)(2cosx-1)dx=I

=0π2(1+cos(3x)2cos(x)1)dx=0π2cos(3x)cos3π32cos(x)12dx=0π2cos(3x)cos3π32(cos(x)cosπ3dxascosπ3=12=0π2(4cos3(x)3cos(x))(4cos3π33cosπ3)2(cos(x)cosπ3)dxascos(3x)=4cos3(x)-3cos(x)=0π24cos3(x)cos3π32cosxcosπ33cosxcosπ32cosxcosπ3dx=0π22cos(x)cosπ3cos2(x)+cos2π3+cos(x)·cosπ3cosxcosπ33cosxcosπ32cosxcosπ3dxas(a3-b3)=(a-b)(a2+b2+ab)=0π22cos2(x)+12+cosxdx320π2[x].dx=0π21+cos(2x)+12+cosxdx32π20cos(2x)=2cos2(x)-1=0π2cos(2x)+32+cos(x)dx3π4=sin(2x)4+32x+sin(x)0π23π4=sin2(π2)2sin02+32π20+sinπ2sin03π4=sin(π)2+3π4+1-3π4=0+10=1Hence, option B is correct.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Inequalities of Definite Integrals
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon