The value of ∫0πsin50(x)·cos49(x)dx is
0
π4
π2
1
Explanation for the correct option
Given: ∫0πsin50(x)·cos49(x)dx
Let I=∫0πsin50(x)·cos49(x)dx------(1)
using the property x→a+b-x ∫bax·dx=∫ba(a+b-x)·dx
I=∫0πsin50(π+0-x)·cos49(π+0-x)dx⇒I=-∫0πsin50(x)·cos49(x)dx------(2)
Adding equations (1) and (2)
⇒I+I=∫0πsin50(x)·cos49(x)dx-∫0πsin50(x)·cos49(x)dx⇒2I=∫0πsin50(x)·cos49(x)-sin50(x)·cos49(x)dx⇒2I=0⇒I=0
Hence, option A is correct.