The value of ∫02x2·dx, where x is the greatest integer function, is
2-2
2+2
2-1
Explanation for correct option
Given: ∫02x2·dx
Let I=∫02x2·dx
x2=0,0≤x<11,1≤x<2
⇒I=∫02x2·dx⇒I=∫01x2·dx+∫12x2·dx⇒I=∫010·dx+∫121·dx⇒I=0+x12⇒I=2-1
Hence, option (C) is correct.