The value of ∫24log(t)tdt is
12log(2)2
52log(2)2
32log(2)2
log(2)2
Explanation for the correct option:
Compute the required value.
Given: ∫24log(t)tdt
Let,
log(t)=x1tdt=dx
When t=2,x=2
⇒t=log(4),x=log(2)
∫log(2)log(4)xdx=x22log(2)log(4)∫log(2)log(4)xdx=12log2(4)-log2(2)∫log(2)log(4)xdx=12log(4)-log(2)(log(4)+log(2))∫log(2)log(4)xdx=12log(4×2)log42log(a)-log(b)=logab,log(m)+log(n)=log(mn)∫log(2)log(4)xdx=12log(8)log2∫log(2)log(4)xdx=123log(2)log2∫log(2)log(4)xdx=32log2(2)
Hence, option C is the correct answer.