wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of -π2π2cos(x)-cos3(x)dx is


A

0

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

43

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

23

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

15

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

43


Step 1: Compute the required value:

Given: -π2π2cos(x)-cos3(x)dx

-π2π2cos(x)(1-cos2(x))dx-π2π2cos(x)(sin2(x))dx1-cos2x=sin2x-π2π2sin(x)cos(x)dx

Put x=-x

-π2π2sin(-x)cos(-x)dx=--π2π2sin(x)cos(x)dx

So -π2π2cos(x)-cos3(x)dx is an even function,

-π2π2cos(x)-cos3(x)dx=20π2cos(x)-cos3(x)dx

Step 2: Integrate the expression

Let cos(x)=t

-sin(x).dx=dt

When x=π2,t=0

x=0,t=1

20π2cos(x)-cos3(x)dx=201tdt20π2cos(x)-cos3(x)dx=201t12dt20π2cos(x)-cos3(x)dx=2t12+112+10120π2cos(x)-cos3(x)dx=2t32320120π2cos(x)-cos3(x)dx=431-020π2cos(x)-cos3(x)dx=43

Hence, option (B) is the correct answer.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon