The value of∫π4π2exlog(sin(x))+cot(x)dx=
eπ4log2
-eπ4log2
12eπ4log2
-12eπ4log2
Explanation for the correct option:
Compute the required value:
Given:∫π4π2exlog(sin(x))+cot(x)dx
Let exlog(sin(x))=t
exlog(sin(x))+excot(x)dx=dtexlog(sin(x))+cot(x)dx=dt (using product role of differentiation)
When x=π2,t=eπ2logsinπ2⇒eπ2·log(1)⇒0
x=π4,t=eπ4logsinπ4⇒eπ4·log12⇒-12eπ4log(2)
∫π4π2exlog(sin(x÷))+cot(x)dx=∫0-12eπ4log(2)1dt⇒∫π4π2exlog(sin(x))+cot(x)dx=t0-12eπ4log(2)⇒∫π4π2exlog(sin(x))+cot(x)dx=-12eπ4log(2)
Hence, option D is the correct answer.