The value of ∫-π4π4sin-4(x)dx is
-83
32
83
none of these
Explanation for the correct option:
Compute the required value:
Given: ∫-π4π4sin-4(x)dx
=∫-π4π4csc4xdx
=∫-π4π4csc2x(1+cot2x)dx
Let
cotx=t-csc2x·dx=dt
When
x=π4,t=1x=-π4,t=-1
Then,
∫-π4π4csc2x(1+cot2x)dx=-∫-11(1+t2)dt=-∫-11(1)·dt-∫-11(t2)·dt=-t-11-t33-11=-1+1-131+1=-2-23=-83
Hence, option A is the correct answer.