The value of ∫π6π21+sin(2x)+cos(2x)sin(x)+cos(x)dx=
16
8
4
1
Explanation for the correct option:
Compute the required value:
Given: ∫π6π21+sin(2x)+cos(2x)sin(x)+cos(x)dx
=∫π6π21+2sin(x)cos(x)+2cos2(x)-1sin(x)+cos(x)dxsin(2x)=2sin(x)cos(x),cos(2x)=2cos2(x)-1=∫π6π22(cos(x))sin(x)+cos(x)sin(x)+cos(x)dx=2∫π6π2cos(x)·dx=2sin(x)π6π2=2sinπ2-sinπ6=2×1-12=2×12=1
Hence, option D is the correct answer.