The correct option is B 3−sin2
∫20(∣∣x2−3x+2∣∣+|cosx|)dx=∫10(x2−3x+2)dx+∫21(−x2+3x−2)dx+∫π20cosxdx+∫2π2−cosxdx=[13−32+2]+[−x33+32x2−2x]21+[sinx]π20−[sinx]2π2=(13+12)+[(−83+6−4)−(−13+32−2)]+1+1−sin2=(13+12)+[−73+4−32]+2−sin2=3−sin2Hence,option(B)iscorrectanswer.