The value of integral ∫log50ex√ex−1ex+3dx=
3+2π
4−π
2+π
2−π
∫log50ex√ex−1ex+3dx
Let ex+3=t
⇒exdx=dt
Integration becomes ∫84√t−4tdt
Let t=4sec2θ⇒dt=8sec2θtanθdθ
Integration becomes ∫π402tanθ×8sec2θtanθ4sec2θdθ=∫π404(sec2θ−1)dθ
=4(tanθ−θ)π40
=4−π