The value of integral 3∫0(tan−1(x1+x2)+tan−1(x2+1x))dx
Let,
y=∫30tan−1x1+x2+tan−11+x2xdx
∵tan−1x+tan−1y=tan−1x+y1−xy
∴y=∫30tan−1⎛⎜ ⎜ ⎜ ⎜⎝x1+x2+1+x2x1−x1+x2×1+x2x⎞⎟ ⎟ ⎟ ⎟⎠dx
∴y=∫30tan−1⎛⎜ ⎜ ⎜ ⎜⎝x1+x2+1+x2x1−1⎞⎟ ⎟ ⎟ ⎟⎠dx
∴y=∫30tan−1⎛⎜
⎜
⎜
⎜⎝x1+x2+1+x2x0⎞⎟
⎟
⎟
⎟⎠dx
y=∫30tan−1∞dx
y=∫30tan−1tanπ2dx
y=∫30π2dx
y=π2∫321dx=π2[x]30
y=π2[3−0]
y=π2×3
y=3π2