The correct option is B (sinx)lnx+c
Given :
∫(sinx)lnx{(xlnx)cotx+lnsinxx}dx
Let t=(sinx)lnx
Applying ln on both sides,
lnt=ln(sinx)lnx
⇒lnt=lnx⋅ln(sinx)
differentiating w.r.t. x
1tdtdx=lnsinx⋅(1x)+lnx⋅(1sinx)⋅cosx
=lnsinxx+lnx⋅cotx
⇒dtdx=t{lnsinx+(xlnx)cotxx}
∴dt=(sinx)lnx{(xlnx)cotx+lnsinxx}dx
Now,
∫(sinx)lnx{(xlnx)cotx+lnsinxx}dx
=∫1dt
=t+c
=(sinx)lnx+c