wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of integration (sinx)lnx{(xlnx)cotx+lnsinxx}dx is

A
(sinx)2lnx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(sinx)lnx+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(sinx)lnx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
sinx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B (sinx)lnx+c
Given :
(sinx)lnx{(xlnx)cotx+lnsinxx}dx
Let t=(sinx)lnx
Applying ln on both sides,
lnt=ln(sinx)lnx
lnt=lnxln(sinx)
differentiating w.r.t. x
1tdtdx=lnsinx(1x)+lnx(1sinx)cosx
=lnsinxx+lnxcotx
dtdx=t{lnsinx+(xlnx)cotxx}
dt=(sinx)lnx{(xlnx)cotx+lnsinxx}dx
Now,
(sinx)lnx{(xlnx)cotx+lnsinxx}dx
=1dt
=t+c
=(sinx)lnx+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon