wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of integration x(lnx)ln(lnx)(lnx)ln(lnx)x(2ln(lnx)+1)dx equals to

A
(lnx)ln(lnx)2+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x(lnx)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x(lnx)ln(lnx)+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(lnx)ln(lnx)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C x(lnx)ln(lnx)+c
Given :
x(lnx)ln(lnx)(lnx)ln(lnx)x(2ln(lnx)+1)dx
Let t=x(lnx)ln(lnx)(i)
Taking ln both sides, we get
lnt=(lnx)(lnx)ln(lnx)(ii)
Again, taking ln of both sides, we get
ln(lnt)=ln(lnx)+ln(lnx)ln(lnx)
ln(lnt)=ln(lnx)+(ln(lnx))2

Differentiating w.r.t. x we get
1lnt1tdtdx=1xlnx+2ln(lnx)lnx1x

1lnt1tdtdx=2ln(lnx)+1xlnx

dtdx=txlntlnx(2ln(lnx)+1)

from (i) and (ii)

dtdx=x(lnx)ln(lnx)(lnx)ln(lnx)x(2ln(lnx)+1)

dt=x(lnx)ln(lnx)(lnx)ln(lnx)x(2ln(lnx)+1)dx
Now,

x(lnx)ln(lnx)(lnx)ln(lnx)x(2ln(lnx)+1)dx

=1dt

=t+c

=x(lnx)ln(lnx)+c

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon