The correct option is
B π(√2−1)Given the integral,∫3π4π4xsinx+1dx=∫3π4π4x1cosxsinxcosx+1cosxdx=∫3π4π4xsecxtanx+secxdx
Using integration by parts we get,
=−xtanx+secx−∫3π4π41−tanx−secxdx
For,
∫1−tanx−secxdx=−∫1tanx+secxdx=−∫cosx1sinx+1dx
Let,
u=sinx⇒dudx=cosx⇒du=cosxdx
substituting these values we get,
−∫cosx1sinx+1dx=−∫1u+1du
Again let,
v=u+1⇒dvdu=1⇒dv=du
Substituting these values we get,
∫1u+1du=∫1vdv=ln(v)=ln(u+1)=ln(sinx+1)∴∫1−tanx−secxdx=−ln(sinx+1)
So,
−xtanx+secx−∫1−tanx−secxdx=ln(sinx+1)−xtanx+secx∴∫3π4π4xsinx+1dx=[ln(sinx+1)−xtanx+secx]3π4π4=ln(sin3π4+1)−ln(sinπ4+1)−⎡⎢
⎢
⎢⎣3π4tan3π4+sec3π4−π4tanπ4+secπ4⎤⎥
⎥
⎥⎦=π(√2−1).