wiz-icon
MyQuestionIcon
MyQuestionIcon
11
You visited us 11 times! Enjoying our articles? Unlock Full Access!
Question

The value of intergral 3π4π4x1+sinxdx is :

A
π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π(21)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
π2(2+1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2π(21)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B π(21)
Given the integral,
3π4π4xsinx+1dx=3π4π4x1cosxsinxcosx+1cosxdx=3π4π4xsecxtanx+secxdx
Using integration by parts we get,
=xtanx+secx3π4π41tanxsecxdx
For,
1tanxsecxdx=1tanx+secxdx=cosx1sinx+1dx
Let,
u=sinxdudx=cosxdu=cosxdx
substituting these values we get,
cosx1sinx+1dx=1u+1du
Again let,
v=u+1dvdu=1dv=du
Substituting these values we get,
1u+1du=1vdv=ln(v)=ln(u+1)=ln(sinx+1)1tanxsecxdx=ln(sinx+1)
So,
xtanx+secx1tanxsecxdx=ln(sinx+1)xtanx+secx3π4π4xsinx+1dx=[ln(sinx+1)xtanx+secx]3π4π4=ln(sin3π4+1)ln(sinπ4+1)⎢ ⎢ ⎢3π4tan3π4+sec3π4π4tanπ4+secπ4⎥ ⎥ ⎥=π(21).


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon