The correct option is B 2
Given : L1:x+1−3=y+22k=z−32
D.R′s of line L1=(−3,2k,2)
L2:x−13k=y+51=z+67
D.R′s of line L2=(3k,1,7)
we know, angle between two lines cosθ=a1a2+b1b2+c1c2√a21+b21+c21√a22+b22+c22
For lines to be perpendicular, a1a2+b1b2+c1c2=0⇒(−3)(3k)+(2k)(1)+2(7)=0⇒k=2