The correct option is A 14
∫π30cosx3+4sinxdxLet3+4sinx=t⟶(1)⇒0+4cosx=dtdx(diffrentiatew.r.tx)⇒cosxdx=dt4forx=0,3+4sin0=t⇒t=3and,forx=π3,3+4sinπ3=t⇒t=3+2√3∴∫π30cosx3+4sinxdx=∫3+2√331t.dt4=14[logt]3+2√33=14[log(3+2√3)−log3]=14log(3+2√33)⟶(2)∵∫π30cosx3+4sinxdx=klog(3+2√33)⇒14log(3+2√33)=klog(3+2√33)comparingbothsideweget,∴k=14