We have,
limx→0(1−cos2xcos2x−cos8x)=m30
This is the 00 form.
So, apply L-Hospital rule
limx→0(0−(−sin2x)2(−sin2x)2−(−sin8x)8)=m30
limx→0(2sin2x−2sin2x+8sin8x)=m30
limx→0(sin2x−sin2x+4sin8x)=m30
So, apply L-Hospital rule
limx→0(cos2x(2)−cos2x(2)+4(cos8x)8)=m30
limx→0(2cos2x−2cos2x+32(cos8x))=m30
2cos0−2cos0+32cos0=m30
230=m30
m=2
Hence, this is the answer.