wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of L=limx01cos2xcos2xcos8x is m30. Find m.

Open in App
Solution

We have,

limx0(1cos2xcos2xcos8x)=m30

This is the 00 form.

So, apply L-Hospital rule

limx0(0(sin2x)2(sin2x)2(sin8x)8)=m30

limx0(2sin2x2sin2x+8sin8x)=m30

limx0(sin2xsin2x+4sin8x)=m30

So, apply L-Hospital rule

limx0(cos2x(2)cos2x(2)+4(cos8x)8)=m30

limx0(2cos2x2cos2x+32(cos8x))=m30

2cos02cos0+32cos0=m30

230=m30

m=2

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative from First Principles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon