The value of λ for which the vectors 3^i−6^j+^k and 2^i−4^j+λ^k are parallel,is
(a) 23 (b) 32 (c) 52 (d) 25
(a) Since,two vectors are parallel i.e.,angle between them is zero.
∴ (3^i−6^j+^k).(2^i−4^j+λ^k)=|3^i−6^j+^k|.|2^i−4^j+λ^k| [∵→a.→b=|a||b|cos00⇒→a.→b=|→a|→b|]⇒ 6+24+λ=√9+36+1√4+16+λ2⇒ 30+λ=√46√20+λ2⇒ 900+λ2+60λ=46(20+λ2) [on squaring both sides]⇒ λ2+60λ−46λ2=920−900⇒ −45λ2+60λ−20=0⇒ −45λ2+30λ+30λ−20=0⇒ −15λ(3λ−2)+10(3λ−2)=0⇒ (10−15λ)(3λ−2)=0∴ λ=23,23Alternate~MethodLet →a=3^i−6^j+^k and →b=2^i−4^j+λ^kSince, →a||→b⇒ 32=−6−4=1λ⇒λ=23