The value of λ so that the points P,Q,R,S on the sides OA,OB,OC and AB of a regular tetrahedron are co-planar when OPOA=13;OQOB=12;OROC=13 and OSAB=λ is
−−→OA=→a,−−→OB=→b,−−→OC=→c ⇒−−→AB=→b−→a−−→OP=13→a−−→OQ=12¯b −−→OR=13→c∵P,Q,R,S are coplanar points⇒−−→PQ,−−→PR,−−→RS are coplanar ⇒−→PS=α−−→PQ+β−−→PQ ⇒−−→OS−−−→OP=α(12→b−13→a)+β(13→c−13→a)⇒−−→OS=(1−α−β)→a3+α2→b+β3→cBut −−→OS=λ−−→AB=λ(→b−→a)
⇒λ(→b−→a)=(1−α−β)→a3+α2→b+β2→c ⇒β=0;1−α−03=−λ;α2=λ∴λ=−1