The correct option is
B 220−210Given,
to find the value of
(21C1−10C1)+(21C2−10C2)+(21C3−10C3)+(21C4−10C4)+...….+(21C10−10C10)
it becomes,
(21C1+21C2+21C3+...…+21C10) −(10C1+10C2+10C3+...…..+10C10)
Let us multiply with 1 & −1 we get,
(1−1)+[(21C1+21C2+21C3+...….+21C10)−(10C1+10C2+10C3+...….+10C10)]
(∵nCo=1)
Here, we get
(21C0−10C0) [(21C1+21C2+21C3+...…..+21C10)−(10C1+10C2+10C3+...…+10C10)]
⇒(21C0+21C1+21C2+21C3+...….+21C10)−(10C0+10C1+10C2+10C3+...…..+10C10)
∵ We know that,
(1+x)n=nC0+nC1.x+nC2.x2+...……+nCnxn
For x=1, we get,
(1+1)n=nC0+nC1+nC2+...……nCn
⇒2n=nC0+nC1+nC2+...….nCn
Here from 0 to 10 we have 11 terms and for n=21 we get 22 terms it mean half of the {0to10} terms.
So, here we get,
221=21C0+...….+21C21
211=21C0+...…+21C11
210=10C0+...….+10C10
∴2212−210
⇒220−210
∴ The value of (21C1−10C1)+(21C2−10C2)+(21C3−10C3)+(21C10−10C10)
=220−210.