The value of (1+i√2)8n+(1−i√2)8n is, where n∈N
We have,
(1+i√2)8n+(1−i√2)8n
=⎡⎣(1+i√2)2⎤⎦4n+⎡⎣(1−i√2)2⎤⎦4n
=[(12+i2+2i2)]4n+[(12+i2−2i√2)]4n
=[(1−1+2i2)]4n+[(1−1−2i2)]4n
=[(2i2)]4n+[(−2i2)]4n
=(i)4n+(−i)4n
=(i4)n+(−i4)n∴i4=1
=1n+1n
=1+1=2
Hence, this is the answer.