Let (√3+√2)6=I+f
where I is the integral part and f is the fractional part.
As 0<√3−√2<1
⇒0<(√3−√2)6<1
Assume f′=(√3−√2)6
We know that,
(x+y)6+(x−y)6=2[ 6C0x6y0+6C2x4y2+6C4x2y4+6C6x0y6 ]
Putting x=√3,y=√2, we get
(√3+√2)6+(√3−√2)6=2[ 6C0(√3)6+6C2(√3)4(√2)2 +6C4(√3)2(√2)4+6C6(√2)6]=2[27+(15×9×2)+(15×3×4)+8]=2[35+270+180]=970⇒(√3+√2)6+(√3−√2)6=970
So, I+f+f′=970→an integer
As 0<f<1 and 0<f′<1
⇒0<f+f′<2
Also, f+f′ should be an integer.
∴f+f′=1
I=970−1=969∴[(√3+√2)6]=969