The value of [tan{π4+12sin−1(ab)}+tan{π4−12sin−1(ab)}]−1, where 0<a<b, is
Let 2θ=sin−1(ab)
⇒sin2θ=ab
⇒cos2θ=√b2−a2b
Let y=tan{π4+12sin−1(ab)}+tan{π4−12sin−1(ab)}
⇒y=1+tanθ1−tanθ+1−tanθ1+tanθ⇒y=2(1+tan2θ)(1−tan2θ)
∴1y=12(1−tan2θ1+tan2θ) =12cos2θ =√b2−a22b