The correct option is D 4e
Let L=limn→∞[(n+1)(n+2)⋯(n+n)]1/nn
=limn→∞[(n+1)(n+2)⋯(n+n)nn]1/n
=limn→∞[n+1n⋅n+2n⋯n+nn]1/n
=limn→∞[(1+1n)(1+2n)...(1+nn)]1/n
⇒lnL=limn→∞1n[ln(1+1n)+ln(1+2n)+⋯+ln(1+nn)]
=limn→∞n∑r=11nln(1+rn)=1∫0ln(1+x)dx
Using By-parts, with ln(1+x) as the first function and 1 as the second function, we have:
=[xln(1+x)]10−1∫0x1+xdx
=ln2−1∫0[1−(11+x)]dx=ln2−[x−ln(1+x)]10
=ln2−[(1−ln2)−(0−ln1)]
⇒lnL=2ln2−1=ln(22e)
⇒L=4e